Cluster algebras and representation theory

نویسنده

  • Bernard Leclerc
چکیده

We apply the new theory of cluster algebras of Fomin and Zelevinsky to study some combinatorial problems arising in Lie theory. This is joint work with Geiss and Schröer (§3, 4, 5, 6), and with Hernandez (§8, 9). Mathematics Subject Classification (2000). Primary 05E10; Secondary 13F60, 16G20, 17B10, 17B37.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CLUSTER ALGEBRAS AND CLUSTER CATEGORIES

These are notes from introductory survey lectures given at the Institute for Studies in Theoretical Physics and Mathematics (IPM), Teheran, in 2008 and 2010. We present the definition and the fundamental properties of Fomin-Zelevinsky’s cluster algebras. Then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generator...

متن کامل

ON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY

Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...

متن کامل

Cluster-tilted Algebras

We introduce a new class of algebras, which we call cluster-tilted. They are by definition the endomorphism algebras of tilting objects in a cluster category. We show that their representation theory is very close to the representation theory of hereditary algebras. As an application of this, we prove a generalised version of so-called APR-tilting.

متن کامل

Cluster Mutation via Quiver Representations

Matrix mutation appears in the definition of cluster algebras of Fomin and Zelevinsky. We give a representation theoretic interpretation of matrix mutation, using tilting theory in cluster categories of hereditary algebras. Using this, we obtain a representation theoretic interpretation of cluster mutation in case of acyclic cluster algebras.

متن کامل

Cluster Categories and Selfinjective Algebras: Type A

We show that the stable module categories of certain selfinjective algebras of finite representation type having tree class A n are actually u-cluster categories. Since their introduction in [6], [7], cluster categories have become a central topic in representation theory. They provide the framework for the representation-theoretic approach to the highly successful theory of cluster algebras, a...

متن کامل

Categorification of acyclic cluster algebras: an introduction

This is a concise introduction to Fomin-Zelevinsky's cluster algebras and their links with the representation theory of quivers in the acyclic case. We review the definition cluster algebras (geometric, without coefficients), construct the cluster category and present the bijection between cluster variables and rigid indecomposable objects of the cluster category.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017